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Abstract. With the escalating threats posed by cyberattacks on Indus-
trial Control Systems (ICSs), the development of customized Industrial
Intrusion Detection Systems (IIDSs) received significant attention in re-
search. While the existing literature proposes effective IIDS solutions
evaluated in controlled environments, their deployment in real-world in-
dustrial settings poses several challenges. Adding to known obstructions,
this paper highlights two critical aspects that significantly impact IIDSs’
practical deployment, i.e., the need for sufficient amounts of data to train
the IIDS models and the challenges associated with finding suitable hy-
perparameters, especially for IIDSs training only on normal ICS data.
Through empirical experiments conducted on multiple state-of-the-art
IIDSs and diverse datasets, we establish the criticality of these issues in
deploying IIDSs in ICS environments. Our findings show the necessity
of extensive malicious training data for supervised IIDSs, which can be
impractical considering the complexity of recording and labeling attacks
in actual ICSs. Furthermore, while other IIDSs circumvent the previous
issue by requiring only benign training data, these can suffer from the
difficulty of setting appropriate hyperparameters, which likewise can di-
minish their performance. By shedding light on these challenges, we aim
to enhance the current understanding of limitations and considerations
necessary for deploying effective cybersecurity solutions in ICSs, which
might be one reason why IIDSs see few deployments.

Keywords: Industrial Intrusion Detection Systems - Cyber-Physical
Systems - Industrial Control Systems - Hyperparameter - Deployment.

1 Introduction

Industrial Control Systems (ICSs), ranging from manufacturing over power grids
to water and gas distribution, are facing harmful consequences due to cyberat-
tacks [3,17]. The protection of such facilities is, however, not trivial as many
systems rely on insecure legacy communication protocols, replacement of which
is cumbersome, expensive, and often unrealistic due to high uptime require-
ments [15]. Consequently, recent research focuses on easily retrofittable Indus-
trial Intrusion Detection Systems (IIDSs) specifically designed to take advantage
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of the unique characteristics of each ICS by searching for anomalous behavior in
largely predictable networking patterns and physical processes [22].

The foundation of these detection mechanisms is mostly rooted in classical
supervised machine-learning or One-Class Classifiers (OCCs) [22,34]. In super-
vised approaches, the IIDS is trained on labeled samples of normal behavior and
attacks to learn classifiers, e.g., Random Forests (RFs) or Support Vector Ma-
chines (SVMs) [27]. Meanwhile, OCCs are trained only on normal ICS behavior,
e.g., to identify the operational boundaries of physical measurements [33], and
deviations from this learned behavior are classified as potential attacks.

Research demonstrates the alleged effectiveness of hundreds of newly pro-
posed IIDSs by evaluating them on dedicated datasets and publishing achieved
detection performances [8,22]. In vitro, these IIDSs achieve excellent results [12,
20, 24, 33]. However, when it comes to real-world deployments, these solutions
are challenging to configure [10] and then cannot perform as promised [2,30]
and thus do not find their way into practice [29]. Consequently, the performance
derived by current evaluation methodologies seems hardly representative of the
actual quality of an IIDS if deployed in the real world [6]. While the scientific
literature already identifies challenges for transferring IIDSs from research into
practice [2,6,30], we proclaim that two aspects impacting IIDSs’ deployability
in ICS environments require additional attention.

First, it remains unclear how much training data is required to maximize
detection performance. This question is especially critical in the case of super-
vised IIDSs, where the generation of attack samples in a testbed might still be
relatively easy, but collecting or generating real-world attack samples is much
harder [7]. OCCs’ training data, on the other hand, is easily collectable, but they
still require hyperparameter tuning [18]. Yet, hyperparameter tuning is rarely
intuitive, especially with often-employed custom classifiers, and it remains un-
known whether it is possible to transfer good hyperparameters between ICS
deployments as considered feasible in other machine-leraning domains [28]. In
research, the authors thus may optimize them for a given dataset (with attacks),
which is, however, unfeasible in practice due to lack of attack samples.

Intrusion detection for ICS is especially challenging because of hard to obtain
and labeled attack samples from cyberattacks in real systems, as their genera-
tion could expose, disrupt, and potentially damage sensitive infrastructure or
facilities. For artificial datasets and testbeds as used in research [8], on the other
hand, it is relatively easy to generate such attack samples. Thus far, IIDS propos-
als do, however, all require custom training phases for the concrete deployment
with hardly any model transferability across scenarios [11,34]. We thus observe
a large discrepancy between training data availability for research activities and
real-world deployments, which may be the cause for the reported challenging
deployment of current research proposals [2,29]. In this publication, we measure
the severity of these factors on the detection performance of diverse IIDSs to
understand how big their influence in potential deployments can become.

Contributions. To investigate the potential influence of training data avail-
ability on IIDSs’ deployability, we make the following contributions:



Deployment Challenges of Industrial Intrusion Detection Systems 3

e We demonstrate that the amount of attack samples in training significantly
influences the performance of IIDSs based on supervised machine-learning.

e We show that the influence of hyperparameters for OCC-based IIDSs varies
tremendously. While some IIDSs are susceptible to even tiny changes, others
are largely hyperparameter-agnostic and even generalize across deployments.

e Based on our findings, we advocate for more expressive IIDS evaluation pro-
cedures to narrow the gap between research and real-world IIDS deployments.

Availability Statement. To facilitate further research, we publish the ar-
tifacts from our paper: https://zenodo.org/records/10728074

2 Background on Industrial Intrusion Detection

For readers unfamiliar with the topic of industrial intrusion detection, we mo-
tivate the rationale of retrofitting such solutions to ICS. We then present one
IIDS from the literature in detail, which we evaluate in this publication.

Industrial Control Systems (ICSs) are the foundation of diverse applications
such as manufacturing, production, distribution of water, gas, or electricity, and
autonomous vehicles [17]. One typical architecture that all these applications
rely on are digital control loops measuring the environment with sensors and
influencing it through actuators usually interconnected with industrial control
networks [15]. Consequently, ICSs are likewise susceptible to regularly occurring
threats from cyberspace [3]. For their mitigation, either preventive measures
such as authenticated and encrypted communication channels [9] or detective
approaches like IIDSs [22] can be implemented. This publication focuses on the
latter, which aim at timely indicating malicious behavior to ICS operators before
actual harm can be conducted and avoid attacks remaining uncovered.

To detect unwanted behavior, the detection methodologies underlying indus-
trial IDSs make great use of domain knowledge and ICS-specific behavior [34].
One key attribute is ICSs’ notorious predictability, as they usually perform repet-
itive tasks [15]. Based on a set of training data, a detection model can be trained
and tuned with hyperparameters to indicate unexpected deviations, such as cy-
berattacks. Note that supervised IIDSs require attack samples while OCC meth-
ods solely train on benign data. The goal of each approach and their tuning is to
detect as many cyberattacks as possible while emitting few false positive alerts,
which would have to be falsified by operators afterward. The performance of an
IIDS is ultimately measured with metrics [22] like the F1 score.

One approach to implementing such an OCC-based IIDS is MinMax (cf.
Fig. 1) [33]. It is based on the fact that physical values measured by sensors
usually reside within precise limits, e.g., a boiler inside an ICS has a lower
and upper operational temperature. MinMax extracts these limits from a set of
benign training data. Then, since physical measurements can underlie natural
variation and noise, the approach enlarges these limits by a configurable hyper-
parameter to avoid too many false positive alarms. In the end, an alarm is raised
if a measurement exceeds or undercuts the trained threshold. Note that MinMax
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Fig. 1. An IIDS learns the repetitive patterns of an ICS’s behavior to indicate anoma-
lies. This requires finding a suitable hyperparameter, such as the threshold for MinMax
visualized here [33], which influences the alert decision of an IIDS.

serves as an example and IIDSs generally exhibit complex decision-making al-
gorithms. Finally, the ICS operators are in charge of analyzing the raised alarm
and initiating countermeasures.

For OCC-based IIDSs, as depicted here, the training requires benign data
recorded, e.g., during normal ICS behavior. Still, for deployment, hyperparame-
ters, i.e., the threshold, have to be adequately selected to reduce the number of
false-positives and not miss attacks (cf. Fig. 1). Contrary, while supervised ITDSs
can find adequate hyperparameters themselves during training as they also learn
on malicious samples, this requires obtaining or generating such (attack) data
in an ICS potentially involving actual physical processes [7].

3 Open IIDS Deployment Challenges in ICS

After a short primer on IIDSs, we now highlight deployment challenges of IIDSs
along recent related work, reproducibility studies, and meta-reviews (Sec. 3.1).
Afterward, we formulate the research questions addressed in this paper (Sec. 3.2).

3.1 Related Work

For IDS research, there exists a body of meta-studies that critically reflect their
effectiveness and suitability. In that regard, Sommer et al. [30] argue, not specif-
ically focusing on industrial networks, that machine-learning is better suited
for finding similarities than differences, which complicates their application in
anomaly detection. Moreover, it is challenging to conduct sound evaluations,
which they presume to be the reason why most approaches cannot keep up with
expectations in real deployments. Adding to these issues, Ahmed et al. [2] identify
scalability, exhaustive system modeling during training, and noisy input data as
challenges seldom evaluated in live deployments. Also challenges like operational
drift and component aging become only apparent in real deployments [25]. While
issues of applying general machine-learning in practice are well-known [6], the
effects of training industrial IDSs in artificial scenarios and their implications
for potential deployments have thus far not been experimentally analyzed.
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Moreover, general machine learning research has examined the importance of
hyperparameter tuning [6, 18]. Here, we are mostly concerned with second-level
hyperparameters, i.e., hyperparameters that must be set prior to training [28§].
To obtain a general understanding of the tunability of these second-level hy-
perparameters, Probst et al. [28] analyzed six supervised machine-learning al-
gorithms. They found good default values working on many datasets and iden-
tified those hyperparameters worth considering for tuning. In a similar study,
Weerts et al. [32] found out that leveraging default hyperparameters was non-
inferior to tuning them. However, all these works mostly consider supervised
machine-learning and neither look at OCC nor tackle the peculiarities in ICS.
Regarding the latter, default values found in these works do not apply to the
entirely different and custom OCC-based IIDS algorithms usually found in ICS
research. Focusing on ICS, Fung et al. [14] show exemplarily that three consid-
ered IIDSs deliver mostly stable performance under different hyperparameters.
However, the set of tested hyperparameters is derived from attack samples, which
may not be available (in high quantity or quality) for real deployments.

3.2 Research Questions

The deployment of IIDSs in real industrial networks proves challenging, with
experimental deployments failing to keep up with promising results from artificial
scenarios. We suspect training data availability, especially samples of attacks, to
be one potential cause for this situation. Detection algorithms themselves are
often applicable to multiple industrial domains [34]. However, they assume to
be trained separately for each deployment to learn the expected behavior. For
example, the learned boundaries of a water tank’s maximum acceptable fill level
differ for each IIDS deployment. Consequently, it is inevitable to train an IIDS for
a specific target use case. Yet, this challenge of training an IIDS is not critically
reflected in research where simply another (existing) dataset can be leveraged.
To verify our suspicion and improve future evaluation methodologies of IIDSs
to reflect their actual deployability into real-world scenarios, we answer four key
research questions within this paper.

Q1 — How many attack samples do supervised IIDSs need? The
training of supervised IIDSs requires benign and malicious data samples. E.g.,
one of the most commonly used dataset [22], the Morris Gas dataset [26], consists
of 274.628 samples, of which 22% are attacks. For evaluations, authors usually
randomly shuffle and split this dataset, leveraging 80% for training and the rest
for evaluations [4,27]. With this split, the training data still contains around
48.000 attack samples. Yet, obtaining this amount of labeled attack samples
from each ICS an IIDS should be deployed is unrealistic considering the costs
and risks associated with their generation leading to our question.

Q2 — How much training data do OCC-based IIDSs need? IIDSs
requiring only benign training data can be trained with less difficulty, e.g., even
during the regular operation of an ICS. However, this training data must still be
collected, and it must be ensured that it reflects all possible normal behavior.
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Hence, we want to understand how much training data is actually necessary and
whether large variances exist across detection methods.

Q3 — What is the influence of hyperparameters on performance?
Beyond training data, OCC-based IIDSs request hyperparameters, which may
significantly impact detection performance. Here, the MinMax IIDS introduced
in the background (cf. Sec. 2) uses a fixed threshold across datasets, whereas
an optimized threshold could drastically influence detection performance, as ev-
idenced in Fig. 1. However, such hyperparameter tuning is only possible if attack
samples for the concrete deployment scenario are available.

Q4 — Can we transfer good hyperparameters across scenarios? To
unlock the benefits of tuned hyperparameters in OCC-based IIDSs, we consider
the previously proposed concept of transferring good configurations across de-
ployment scenarios [28, 32]. Such a step would also allow us to use the extensively
available attack samples from artificial scenarios to tune real-world deployments.
However, thus far, it remains unclear to what extent such transferability is pos-
sible and to what extent this is scenario and IIDS dependent.

4 Deployability of Supervised 1IDS

Our initial analysis concerns the deployability of supervised IIDSs w.r.t. the
amount of required attack samples. We first describe our experiment design,
then analyze our results, and finally summarize the implications of our findings.

4.1 Experiment Setup

For our experiments on supervised IIDSs, we consider a RF and a SVM clas-
sifier as used in several proposed IIDSs [4,19,27]. As independently examined
by Perez et al. [27] and Anton et al. [4], these classifiers can be adapted to op-
erate on Modbus network traffic via derived features such as the function code
or transmitted process values. The classifiers are trained and evaluated on a set
of benign and malicious Modbus packets. Our experiment is based on existing
re-implementations of these two IIDSs made available in the IPAL IDS Frame-
work [34]. We took care to use the same data preprocessing and hyperparameters
as mentioned in the publication [27] (cf. Availability Statement).

Concerning the datasets, we leverage the same dataset originally used to
evaluate the two IIDSs [4, 27], which is also the most commonly used dataset for
supervised ITDSs [22]. This dataset has been recorded in a miniature gas-pipeline
ICS lab-environment leveraging Modbus as communication protocol. Within this
setup, a total of 60048 attack samples across 35 types of attacks with varying
complexity, such as reconnaissance or modifying setpoints, have been collected.
Whether accumulating and labeling this amount of attack data outside a lab in
the field is actually possible remains questionable.

To understand how many attack samples are necessary to train a supervised
IIDS, we reduce the number of attacks contained in the training dataset while
keeping the number of benign training data constant. We start with a random
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Fig. 2. Gradually increasing the amount of attack samples within the training data
reveals that both RF and SVM require lots of data to yield satisfying detection per-
formance. For a simple attack, cf. Fig. 2(b), the RF requires only about three samples.

80/20 train/test split as in the original evaluation [4,27] and five folds. We then
remove all but one attack sample from the training data and retrain the IIDS
while gradually increasing the amount of attacks in the training data. The 20%
of the test set remain unchanged after the random train/test split. For each
number of learned attack samples, we calculate the average recall (fraction of
identified attacks) and precision (fraction of correct alerts) over all folds.

4.2 Q1 — How many attack samples do supervised ITDSs need?

Having established our methodology, we can now exemplarily assess the de-
ployability of supervised IIDSs w.r.t. to the amount of attack samples. To this
end, Fig. 2 depicts the detection performance of the RF and SVM classifiers. In
Fig. 2(b) and Fig. 2(c), we show two exemplary attack types in isolation.

Starting with a broad overview in Fig. 2(a), if the RF is trained on all avail-
able attack samples (z = 48.049), it reaches a precision of 0.998 and a recall of
0.987. Likewise, the SVM achieves a score of 0.885 in precision and 0.924. As we
expect, both IIDSs achieve the best detection performance when trained on all
(those in the original train set) available attack samples.

As we reduce the number of attack samples, we observe a nearly linear reduc-
tion in recall of both IIDSs. For RF, the performance drops from 0.987 to about
0.44 if provided with just 5000 attack samples. Below this threshold, the recall for
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RF drops even more drastically. The SVM shows a similar trend with fewer fluc-
tuations. Interestingly, precision remains largely unaffected in both cases, which
we presume results from not changing the amount of benign training data.

To better understand these effects, we repeat this experiment only consider-
ing a single attack type during training and testing. Exemplarily, we show attack
type 19 from the dataset [26] in Fig. 2(b) and attack type 10 in Fig. 2(c). For at-
tack type 19, we observe a vastly diverging behavior between RF and SVM. The
RF achieves optimal detection rates after just three attack samples. The IIDS
has likely learned to identify that this attack uses a Modbus function code not
occurring during normal behavior. In contrast, this generalization does not ap-
ply to the SVM. Attack type 10, shown in Fig. 2(¢), which manipulates reported
sensor readings, proves difficult to learn for both IIDSs. Here, the recall contin-
ues to grow linearly as more attack samples are available for training. Overall,
we see that only with a high number of malicious training samples can the ITDSs
score the excellent detection results reported in the respective publications.

4.3 Conclusion

Looking back at our results, we see that supervised IIDSs can generalize an
attack pattern in some cases as observed, for example, for the RF classifier for
attack type 19, which introduces an otherwise unused Modbus function code.
This attack should thus also easily be detected by simple rule-based IIDSs [13].
In general, however, we observe relatively little generalization for both IIDSs.
The linearly increasing recall scores with increasing the number of attack samples
rather indicate an overfitting behavior of the classifiers, i.e., only the precise
misbehavior observed during training is also later classified as such. These results
provide further evidence for prior work by Kus et al. [21], who already identified
a lack of generalization during supervised IIDS training.

As proclaimed by Etalle et al. [11], we also find that supervised IIDSs are
rather unsuited for deployments in diverse ICS environments due to only per-
forming well with many attack samples, potentially due to overfitting, which
aligns with prior research [2, 11,21, 25]. Yet, these issues are hardly discussed in
prior work as publications promoting the use of machine-learning in ICS mainly
focus on the final achieved detection performance [4, 19, 27]. Consequently, novel
designs for supervised IIDSs must be critically reviewed to be considered suitable
for real ICS deployments.

5 Deployability of OCC-based IIDS

OCC-based IIDSs promise to avoid these issues of supervised IIDSs by requiring
only training data from benign ICS operations. Getting such benign data is easier
than collecting or generating attack samples, but it must still be collected, pro-
cessed, and verified, such that requiring less training data makes an OCC-based
IIDS easier to deploy. Moreover, hyperparameter tuning, especially if hyperpa-
rameters cannot be transferred across scenarios, can still unrealistically boost
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Table 1. We analyze four state-of-the-art IIDSs with diverse hyperparameters, on three
datasets. We aim at 10.000 random samples for each IIDS’s hyperparameter space, yet
we have reached computational limits, resulting in fewer samples for some.

IIDS SWaT [16] WADI [1] BATADAL [31] Parameter
MinMax [33] 10000 10000 10000 2
Invariant [12] 703 10000 1088 10
TABOR [24] 10000 10000 10000 7
Seq2SeqNN [20] 231 182 500 6

an OCC-based IIDSs’ performance in research. To understand these effects, we
first lay out the evaluation setup underlying our measurements (Sec. 5.1) to then
tackle the research questions Q2 to Q4. In the end, we summarize our findings
on the deployability challenges of OCC-based IIDSs (Sec. 5.5).

5.1 Experiment Setup

We examine four IIDSs, which were published at top security conferences — Min-
Max [33], Invariant [12], TABOR [24], and Seq2SegNN [20]. We make use of avail-
able open-source implementations or validated re-implementations within the
IPAL IIDS framework [34]. For further details, we refer the reader to Appx. A,
the respective publications, or IPAL’s public implementation [34]. These four
IIDSs, which also feature vastly different numbers of hyperparameters for their
configuration, cf. Tab. 1, build the foundation for our analysis.

To generalize our results, we analyze three datasets, namely the SWaT [16],
WADI [1], and BATADAL [31], which are among the most commonly used
datasets in this research area [22]|. All three datasets come with dedicated train-
ing data that is free of attacks. The testing part of SWaT and WADI contains 36
and 14 different cyberattacks respectively while BATADAL provides 12 attacks.

While the previous experiment’s design decisions coincide with usual IIDS
evaluation methodologies [22], our work differs within the hyperparameter se-
lection we aim to study. Although three of the examined IIDSs’ publications
contain short discussions about (some) hyperparameters [12, 20, 33], none de-
fines the precise acceptable range of the hyperparameter space. To this end, we
have to come up with our own definition. For nominal and ordinal hyperparame-
ters, we simply enumerated all possible values, and for rational numbers, we had
to define a custom range based on our understanding of the proposed system.
During their definition, we took special care that the values proposed in the
original publications are contained in our analyzed ranges.

Finally, to conduct a parallelized examination of the hyperparameter in a re-
peatable manner, we leveraged Ray Tune [23], a library to scale hyperparameter
search and tuning. Provided with a definition of a hyperparameter search space,
Ray Tune selects one hyperparameter configuration uniformly at random at a
time and then trains and evaluates the respective IIDS on the dataset. We then
calculate the precision, recall, and F1 score metrics, as these are among the most
common performance metrics in IIDS research [22].



10 K. Wolsing et al.

1.0 SWaT WADI BATADAL
) MinMax = TABOR
0.8 -1 T | =Invariant ==Seq2SeqNN
0.6 |
o
\ EEEEES T
0.2 \ A |
0.0 T T T T T T T T T T T T T T T
90 70 50 30 10 90 70 50 30 10 90 70 50 30 10

available training data [%)

Fig. 3. Reducing the amount of benign training data likewise diminishes the detection
rate but not all IIDSs experience an equal performance reduction. The training data
Seq2SeqNN on SWaT and WADI is reduced in steps of 10.000 in contrast to 1.000 for
the others whereas all IIDSs on BATADAL are sampled in steps of 100.

We aimed to achieve up to 10.000 samples for all IIDS and dataset combi-
nations, building a solid foundation for our subsequent analyses, cf. Tab. 1. In
some cases, such as evaluating the Invariant IIDS on SWaT, training a single
configuration takes up to eleven days, which explains the reduced number of
samples. Similarly, the training of the Seq2SeqNN IIDS requires exclusive access
to potent GPUs to train a neural network. To grant other researchers access
to the result of these extensive computations for further analyses, we made all
collected data publicly available, cf. Availability Statement.

5.2 Q2 — How much training data do OCC-based IIDSs need?

First, we want to understand the impact of the amount of (benign) training
data on IIDS performance. Here, we only consider the best hyperparameters
found w.r.t. the F1 score for each IIDS and dataset combination. Beginning
with the entire training data (100%), we gradually reduced the training data
and evaluated the IIDS after each training against the entire test dataset.

As shown in Fig. 3, the amount of training data impacts the detection per-
formance of each IIDS differently. E.g., the performance of MinMax on SWaT
and BATADAL initially stays high. Only when the data is reduced to about less
than 40% does the performance drop significantly. On WADI, this drop occurs
much later at about 20% of the overall training data. For Invariant, we observe a
similar pattern on SWaT achieving top scores even with about 25% of the data.
Yet, on WADI, this approach requires nearly all training data to get close to
its optimal score. TABOR on SWaT shows another interesting behavior where
instead of a slow reduction, we observe occasional drops in performance, which
accumulate toward the end. Upon investigation of TABOR’s trained model, we
noticed that the drops in between are caused by learning a different model,
showing the unstable nature of the trained model. This also occurs in reduced
form for BATADAL but not on WADI, where TABOR shows a more continuous
reduction as less training data is made available. Seq2SeqNN performs poorly
on SWAT and on the other datasets its performance drops significantly as train-
ing data is reduced to 50%. Overall, we observe that all IIDSs perform nearly
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optimally on SWaT and BATADAL with just about half of the training data,
while performance on WADI often quickly drops off.

Takeaway. Our data shows that judging upfront whether one has acquired
enough training data in a deployment scenario can be challenging. The amount
of training data seems to be neither directly dependent on the IIDS nor on the
complexity of the concrete scenario. As Invariant and Seq2SeqNN on WADI
experience a substantial increase close to 100% training data, this may be an
indication that these IIDSs would benefit from even more training data than
contained in the dataset. We also see that the performance of the different IIDSs
drops suddenly after a certain point, indicating that not observing some specific
event during training can be responsible for much of the performance loss. In-
terestingly, the IIDSs seem to have different events triggering their performance
loss. When interpreting these results, dataset characteristics should also be kept
in mind. E.g., SWaT contains one attack that is significantly longer than the
others, which significantly worsens the Fl-score if it is not detected anymore.
Hence, the sudden drops of MinMax and Invariant on SWaT could be explained
by the sudden inability to identify that specific attack. Overall, determining the
amount of training data varies across IIDSs and scenarios, such that a final as-
sessment can only be made on a case-by-case basis. Nonetheless, over all datasets,
utilizing more training data does not diminish the detection performance.

5.3 Q3 — What is the influence of hyperparameters on performance?

Next, for our investigation on the significance of hyperparameters (Q3), we take
a broad view of the obtained measurements (cf. Sec. 5.1). To this end, Fig. 4
depicts every IIDS’s performance distribution along several metrics and datasets.
At first glance, we observe that hyperparameters have a tremendous effect on
the performance of IIDSs. E.g., considering the precision of the MinMax IIDS on
the SWaT dataset (cf. (D in Fig. 4), the performance varies between 0.99 at best
and 0.13 at worst, which implies that, depending on the chosen configuration,
the approach performs close to optimal or is inapplicable. But looking at the
entire distribution, it becomes apparent that low values in recall are outliers as
the median performance (white dots) is still high at 0.89. Still, the standard
deviations around the median is relatively high at 0.23, and thus, performance
penalties can be expected for MinMax in recall if not parameterized correctly.
Taking a broader look at the precise distribution of different approaches, not
all ITDSs exhibit the same patterns. When considering MinMax and Invariant for
SWaT in the F1 score, the majority of configurations perform decently, and bad
results are mostly outliers. We call this type of distribution stable as it is quite
likely to pick a good-performing configuration without having to invest great
efforts. In contrast, the opposite is true for TABOR (2), with a median of just
0.15, which is far from what could be achieved at best (0.79) with this approach.
Here, unlike MinMax, it is quite unlikely to hit such a good-performing config-
uration even with expert knowledge. Therefore, there is a qualitative difference
between the presumably stable MinMax, which promises to have a straight-
forward configuration process [33], and TABOR. Note that for MinMax, these
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Fig. 4. An I[IDSs’ performance depends on an optimal choice of hyperparameter. While
MinMax or Invariant yield satisfying results in F1 score on SWaT for the majority of
configurations, obtaining a good configuration for TABOR is challenging. Thus, judging
the expectable performance of an IIDS by a single number can be misleading.

observations may be affected by only having two hyperparameters in the first
place (cf. Tab. 1). Still, Invariant, despite having the most parameters, features
a similar stable distribution as MinMax, at least w.r.t. the F1 score.

Next, we want to understand whether the (in-)stability property is inherent
to a specific IIDS. First and foremost, note that the absolute scores achieved
between the datasets (cf. lower part of Fig. 4) are sometimes lower compared to
SWaT as not all IIDSs were primarily designed for the other datasets. Hence,
we only focus on the distributions here. In general, the distributions are loosely
similar in each setting. The performance distributions of most IIDSs have roughly
the same features on WADI and BATADAL, with some exceptions, such as
WADI missing the outliers to the top in some cases. This observation indicates
that the stability of an IIDS may be dominantly determined by the underlying
detection mechanism rather than the scenario. Consequently, stability seems to
be an inherent feature of an IIDS, which could act as a proxy for determining
how easy or difficult deploying an IIDS in a new, real application may be.

Considering MinMax, the authors publish their IIDS with a F1 score of 0.78
for SWaT and 0.52 for WADI [33]. W.r.t. our evaluation, these numbers are close
to the median (SWaT 0.8 and WADI 0.52) and leave headroom to the maximum
(0.82 respectively 0.55). Thus, the published numbers are representative of the
expectable performance, which comes as no surprise as the authors stated not
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Fig.5. The impact of hyperparameters can vary significantly between approaches.
While on the SWaT for MinMax (upper plot), one parameter is decisive for the entire
performance, suitable configurations for TABOR (lower plot) are more challenging to
obtain as several parameters influence each other.

to have performed any parameter optimization [33]. In contrast, Feng et al. [12]
promote the Invariant IIDS with a recall of 0.79 for SWaT and 0.47 for WADI.
Compared to the median performance (SWaT 0.7 and WADI 0.2), the published
values are outliers by multiple standard deviation. Therefore, it can be assumed
that Feng et al. published optimized performance statistics. Such fine-tuning
certainly has value in examining what maximal performance can be achieved by
a proposed approach. However, it risks misrepresentation how good a system may
perform in a real deployment and may prevent fair comparisons of approaches.

Given the distinct behaviors IIDSs show under varying hyperparameters, we
also asked what the reasons for these behaviors might be. Therefore, we take
a closer look at MinMax and TABOR on the SWaT dataset and F1 score, as
depicted in Fig. 5, where we visualize the detection performance as a heatmap
in dependence of two relevant hyperparameters. For MinMax, we identify that
the final result mostly depends only on the threshold parameter (cf. Sec. 2). For
small values (below 0.6), there is a significant drop in detection performance, but
afterward, there are only subtle changes and the threshold has no significant im-
pact anymore. In contrast, for TABOR, we observe more interdependence in two
of the seven hyperparameters. Both parameters influence the performance, and
changes to one parameter alter the optimal value of the other parameter. Thus,
only a combination of correctly set hyperparameters yields good configurations,
which complicates setting up TABOR and explains our previous observation
where only a few configurations yielded good performance.

Takeaway. We observed that hyperparameters have a tremendous impact
on the measured performance of OCC-based IIDSs. Moreover, there exist con-
siderable differences in IIDS stability. The MinMax or Invariant IIDSs yield
results that are close to their optimal in a majority of configurations. At the
same time, TABOR only achieves optimal performance if multiple hyperparam-
eters are fine-tuned, cf. Fig. 5. Our results stand in contrast to Fung et al., who
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Fig. 6. Transferring the top ten configurations found for one dataset to another
promises to avoid the problem of parameter optimization in new settings. But, this
methodology usually lacks behind the achievable optimum (¢) and does not system-
atically exceed randomly selected hyperparameters, cf. » marking the median of all
hyperparameters in the target dataset.

claimed that reconstruction-based IIDSs can have a good performance over a
broad spectrum of hyperparameters [14], likely because our evaluation covered a
more diverse set of IIDSs. This (in-)stability w.r.t. hyperparameters complicates
scientific comparisons and real-world applicability if the performance of an IIDS
is only acceptable for a very confined parameter space. Consequently, we warn
that judging an IIDSs’ performance by a single configuration, as done currently
throughout the literature, can be misleading.

5.4 Q4 — Can we transfer good hyperparameters across scenarios?

As we discussed in the previous section, it can be difficult to obtain suitable hy-
perparameters for an IIDS for a given deployment or dataset. For the selection
of suitable hyperparameters, we do, however, not need to start from scratch in
most cases. Instead, published parameters or guidelines from previous deploy-
ments may help to identify good parameters. Thus, one idea is to reuse these
already known configurations and transfer them to a new scenario to hope-
fully achieve adequate performance. If such hyperparameter transfers are feasi-
ble, it would alleviate the problem of (in-)stability discussed before. Previously,
Probst et al. [28] found universally good-performing default hyperparameters
for supervised IIDSs. However, we consider OCCs-based IIDSs with potentially
more intricate hyperparameters that may hinder such transferability.
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As the first step in that direction and to examine whether a known, good-
performing configuration is also suitable on a different dataset, we conducted
the following evaluation. First, we select the top ten configurations according to
the F1 score of an IIDS and dataset, e.g., MinMax on SWaT, and measure the
performance of these hyperparameters applied to the other datasets, i.e., WADI
and BATADAL. Applying this methodology, Fig. 6 depicts the distribution of
the obtained ten results on the new datasets. In addition, we mark the glob-
ally achievable optimum in a given setting found in the previous analysis from
Sec. 5.3 with an ¢ and the median performance of randomly selected hyperpa-
rameters with an . This analysis enables assessing how likely a configuration
is transferable to another scenario without tuning but also depicts the potential
losses in performance along the way. Note that since we sampled all hyperpa-
rameters randomly (cf. Sec. 5.1), it is not guaranteed that we measured the
precise configuration on the respective other datasets. In that case, we selected
the measurement closets to the selected default configuration.

We start considering the Invariant IIDS transferred from the SWaT to the
WADI dataset as a case study first (cf. (D in Fig. 6). We see that the transferred
configurations achieve decent performance relative to the achievable maximum
of 0.5. The median expectable performance from transferring the configurations
(white dot) is —0.15 points lower than the maximum achievable. Given that no
effort was required to find these configurations, this median of the transferred
configurations (0.35) is an improvement over the previous random median per-
formance (0.25, cf. Fig. 4). In contrast to this example, there also exist cases
where hardly any transferability is possible. When considering TABOR, trans-
ferred from the WADI to the SWaT dataset (cf. @ in Fig. 6), there is a large
gap between the median of the transferred configurations (0.23) and the achiev-
able optimum (0.79). While in that case, transferring the results is still better
than picking a random configuration (0.15), a large potential is left on the table.
More generally, the median transferred performance (white dots) is, on average,
0.18 lower than the respective achievable optimum (). At the same time, this
method is equal to randomly selecting a configuration (no difference to » on
average). Thus, while transferring configurations from one scenario to another
seems promising, this concept still proves not be be that advantageous.

Takeaway. On the one hand, OCC-based IIDSs lack guidelines for hyper-
parameter configuration. On the other hand, if known configurations exist, they
only offer limited transferability. On average, good hyperparameters on one
dataset do not perform better than randomly chosen hyperparameters on an-
other dataset. Thus, if an IIDS is challenging to configure in the first place, even
default configurations or templates from other scenarios do not help much, and,
in the worst case, manual efforts are required to tune the approach individually.

5.5 Conclusion

We began with the observation that the amount of data required for train-
ing differs significantly between IIDSs (Q2), which complicates providing con-
crete advice for deployments. Still, as one redeeming feature, more training data
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does not seem to negatively impact the detection performance. Next, we studied
the hypothesis that hyperparameters are a crucial factor for IIDS performance
and again observed vastly different behaviors w.r.t. stability. Indeed, it proved
difficult for some IIDSs to yield good results on average (Q3), and quick so-
lutions such as generic default configurations that generalize to new scenarios
or datasets did not prove promising (Q4). In contrast to the works by Probst
et al. [28] and Weerts et al. [32], we found that deriving default values for hy-
perparameters of OCC-based IIDSs for the ICS domain is challenging for our
three analyzed datasets and tuning them manually based on attack samples still
brings an enormous performance benefit. Therefore, these effects can explain pre-
viously reported problems from related work, e.g., failed reproducibility studies
or deploying such approaches in practice 2,11, 30]. Le., Erba et al. [10] tried to
reproduce the Invariant IIDS and had troubles finding the hyperparameters to
match the publications result. This is in line with our assumption from Sec. 5.3
where we presumed that the authors of the Invariant IIDS have tuned their pub-
lished parameters. Consequently, current evaluation methodologies in research
omit a relevant attribute of IIDSs that is currently not easily measurable.

In general, obtaining a quantitative intuition on an IIDS’s training and tun-
ing demands can provide valuable data on the one hand, for ICS operators having
to select, set up, and configure an IIDS and, on the other hand, for research to
establish fairer and easier comparisons. Note that we do not want to prioritize an
IIDS with low training and low tuning demands over ones with excellent detec-
tion performance. Instead, we want to create awareness for these challenges and
advocate for researchers to scrutinize their work more w.r.t. their deployability.

6 Open Deployment Issues and Limitations

Our results regarding the analysis of research questions Q1 to Q4 prominently
show that there exist complex challenges to transferring an IIDS developed in re-
search to an actual ICS that are not captured accurately by the current standard
in IIDS evaluations. Hence, the standard procedure of publishing the detection
performance for one or multiple datasets [22] is insufficient to capture an IIDS’
true value. Concerning these issues, we now discuss new strategies to assess the
ease and limitations of an IIDS’ deployment already during the research stage.
One significant obstruction in deploying IIDSs is acquiring sufficient training
data (Q1 and Q2) whilst avoiding overfitting of supervised IIDS models. From a
research perspective, an adopted evaluation methodology that more deeply as-
sesses the capabilities and especially training properties of an IIDS in the lab may
be suited to estimate its training demand upfront. In that regard, the evaluation
methodologies we presented enable, one the one hand, inferring the learning rate
from which the amount of required training data for a deployment can be esti-
mated. On the other hand, by visualizing the learning rate of individual attacks,
first signs of overfitting can be revealed. In addition, the methodologies proposed
by in related work [5,21] can answer how well a supervised approach generalizes
to unknown attacks, e.g., found during live operations, which are not part of
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the training data. Together, such enhanced evaluation methodologies can reveal
IIDSs that a) require little training samples and b) generalize to a wide variety
of (zero-day) cyberattacks beyond the ones seen in training.

With the previous issues addressed, the challenge of configuring an approach
(Q3 and Q4) remains. For research, analyzing (new) IIDSs w.r.t. their stability in
hyperparameters or ease of configuration, as done by us, can provide additional
information for ICS operators on which IIDS may be best suited for a given
deployment. Therefore, we ideally need a compact metric that expresses the av-
erage performance or stability of performance results. While the data generated
in our publication would allow us to compute such values (cf. Fig. 4), how to
arrive at a holistic metric that is adequate for scientific purposes is still unclear
to us. Another idea for better understanding OCC-based IIDSs is to use a few
attack samples from reference attacks to configure hyperparameters. Whether
this yields good hyperparameters to detect other attacks remains to be seen.

More generally, while the previously sketched concepts may work well for
research, it is not directly apparent how their insights transfer to actual de-
ployments. Also, deployability, in general, involves more than recording training
datasets and configuring hyperparameters [6]. E.g., the issue of operational drifts
such as wear and tear, which can invalidate once-trained models over time, has
been neglected by us [25]. Answering whether an IIDS is ultimately deployable
in an actual system thus likely has to involve the expertise of ICS stakeholders as
already demanded in meta-surveys, e.g., by Lamberts et al. [22]. Regarding our
work, we can, therefore, not finally argue how much training data would still be
acceptable or how many false positives and false negatives are tolerable without
conducting experiments together with ICS experts within an actual ICS.

7 Conclusion

ICSs become an indispensable building block for our modern society and, with
their high level of digitalization, face potentially disastrous cyberattacks. As a
reaction, research to automatically detect such intrusions took off within the
last decade [22]|, and nowadays, with plenty of promising ITDSs, the transition
to deploying those solutions in real-world ICSs is urgently needed. Yet, this step
involves its own challenges, of which we assess and quantify two in detail in this
paper. Especially in industrial settings, the acquisition of adequate training data,
avoiding overfitting during training, and the configuration of hyperparameters
for IIDSs to match their excellent detection performance found in (synthetic)
research environments is challenging. As we show, too little training data or
tuning of hyperparameters can lead to devastating performance penalties.

While finding solutions to those issues would require the involvement of ICS
stakeholders that ultimately deploy IIDSs, we, from a research perspective, rec-
ommend taking those properties into account while evaluating novel approaches.
Thereby, we can hopefully shift these deployability challenges more into the focus
of researchers who design new intrusion detection methods.
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A 1IDS Description

To measure the deployability of OCC-based IIDSs, we examined four existing
approaches. In the following, we provide a short description of their concept:

MinMaz. The first IIDS, MinMax, learning the minimum and maximum
bounds of a sensors’ normal values (cf. Sec. 2), serves as a representative for
a class of lightweight IIDSs that aim to implement straightforward detection
methodologies that do not require complex configuration, technical understand-
ing, or computational resources [33]. Any violation against the learned minimum
and maximum values is indicated as an alert to the ICS operators.

Invariant. This 1IDS [12] leverages data mining techniques to find mathe-
matical equations that must be fulfilled at all times. E.g., if the inlet valve of
a water tank is opened, its water level is expected to rise. Since an invariant is
fulfilled all the time during normal behavior, any violation is then reported.

TABOR. This IIDS fuses three detection approaches based on timed au-
tomata, Bayesian networks, and out-of-bounds checks [24]. The timed automata
component considers a single sensor value and learns a model of its behavior.
E.g., the water levels of a tank usually rise for 30 minutes and then decrease over
several hours. Together with the Bayesian network, unknown process states can
be determined, such as the inlet valve being still opened despite the water level
rising for more than 30 minutes. To complement their method, an alert is also
raised with an out-of-bounds check working similarly to the MinMax IIDS.

Seq2SegNN. Lastly, Seq2SeqNN [20] trains a neuronal network on GPUs to
understand the ICS’s behavior and perform predictions for the future. Given
a recent history of physical values, the neuronal network is able to perform a
prediction for the near future. If these predictions deviate too much from the
observed behavior, an alarm is raised.



