
Evaluation of an OPC UA-based Access Control
Enforcement Architecture

Björn Leander1,2[0000−0003−2488−5774] �, Aida Čaušević1,3[0000−0001−5293−3804],
Hans Hansson1[0000−0002−7235−6888], and Tomas Lindström2

1 Mälardalen University, Väster̊as, Sweden {bjorn.leander, aida.causevic,

hans.hansson}@mdu.se
2 ABB Industrial Automation, Process Control Platform, Väster̊as, Sweden

tomas.lindstrom@se.abb.com
3 Alstom Rail AB, Väster̊as, Sweden aida.causevic@alstomgroup.se

Abstract. Dynamic access control in industrial systems is becoming a
concern of greater importance as a consequence of the increasingly flexi-
ble manufacturing systems developed within the Industry 4.0 paradigm.
With the shift from control system security design based on implicit trust
toward a zero-trust approach, fine grained access control is a fundamental
requirement.

In this article, we look at an access control enforcement architecture and
authorization protocol outlined as part of the Open Process Communica-
tion Unified Automation (OPC UA) protocol that can allow sufficiently
dynamic and fine-grained access control. We present an implementation,
and evaluates a set of important quality metrics related to this implemen-
tation, as guidelines and considerations for introduction of this protocol
in industrial settings. Two approaches for optimization of the authoriza-
tion protocol are presented and evaluated, which more than halves the
average connection establishment time compared to the initial approach.

1 Introduction

Within industrial systems, such as industrial control systems, logistics, man-
ufacturing, etc., cybersecurity is a factor of growing concern. The industrial
automation systems of today are growing increasingly complex, heterogeneous,
dynamic and interconnected [1–3], which implies that the currently used cyber-
security models based on implicit trust are no longer tenable. Instead using a
zero-trust approach to cybersecurity is gaining ground [4, 5]. Access Control [6] is
one of the major cybersecurity mechanisms in any information system and fine-
grained access control is a basic requirement for a zero-trust architecture [7].

When conducting research on access control, it can be useful to structure the
research according to Policy-, Enforcement- and Implementation-models (PEI),
as suggested by Sandhu et al. [8], where the P-models describe how to the rules
are formulated, E-models describe the enforcement architecture, and I-models
describe the implementation of the components of the enforcement architecture.

2 Björn Leander �, Aida Čaušević , Hans Hansson, and Tomas Lindström

Expressing sufficiently fine-grained access policies for dynamic industrial sys-
tems is a challenging task, but in this work we assume that such rules can be ex-
pressed, e.g., following the approach described by Leander et al. [9] or Knorr [10].
The mechanisms of enforcing access control policies are of great importance, and
should ideally exhibit the same level of flexibility as the expressed policies.

In the previous work [11], different policy enforcement models for dynamic
manufacturing systems have been introduced and discussed. The goal of this
article is to describe and evaluate the implementation models for one of the most
promising enforcement models from that article. The enforcement architecture
uses a combination of local and centralized policy decision points, where the local
decisions are static and the central decisions are dynamic, allowing a flexible and
efficient architecture. The implementation uses Open Process Communication
Unified Automation (OPC UA) [12] as a communication protocol, since it is the
only available industrial protocol supporting policy-delegation mechanisms (to
the best of our knowledge).

There are several previous works looking at quality metrics related to the
OPC UA protocol, further discussed in Section 2. However, none of them look
at the impact of the enforcement architecture, which we tackle in this article.

Problem statement. There is an increasing need for fine-grained and dy-
namic authorization in industrial manufacturing systems. There are available
solution on how to express such policies. However enforcing the policies, and
how the enforcement affects different quality metrics of the system is so far not
widely explored.

Paper objectives. This article focuses on describing and evaluating the
implementation of a policy enforcement architecture that deals with dynamic
access control in industrial systems, using a workflow-based approach for policy
decisions, and the widely adopted OPC UA protocol for communication.

Contributions. The following are our main contributions:

– Description and analysis of a tokens-based OPC UA authorization protocol,
described in Section 3.

– Description of required implementations, described in Section 4.
– Experimental evaluation of impact of enforcement: (Sections 5 and 6)

• Time to completion for session creation and resource requests.
• Impact of token expiry time on resource requests.
• Impact of token size on session creation.

– Two approaches on optimization of the connection establishment protocol,
described and evaluated in Sections 7.

– Recommendations and considerations, discussed in Section 8.

Conclusions and ideas for potential future work are presented in Section 9.

2 Related Work

The enforcement architecture used in this article is based on suggestions from a
previous work [11], there are however other suggestions and approaches of access

Evaluation of an OPC UA-based Access Control Enforcement Architecture 3

control enforcement architectures for industrial systems. E.g., Alcaraz et al. [13],
discuss a policy enforcement system for the distributed smart grid, using au-
thentication tokens similarly as us. Martinelli et al. [14] describes an alternative
enforcement architecture for OPC UA supporting the Usage Control (UCON)
policy model [15], adding an extra protocol layer for handling the UCON pol-
icy decisions. The focus of these works are on the description and formalization
of the enforcement architecture, while we in this paper focus on performance
evaluation of an architecture based on the OPC UA standard.

Several previous works look at performance metrics for different aspects of
the OPC UA protocol. Cavalieri et al. [16] model a part of the OPC UA stack
in a network simulator, evaluating the impact of, e.g., signing and certificate
validation on connection establishment and data read, similarly as our work.
Kohnhäuser et al. [17] investigate the feasibility and performance of secure OPC
UA communication including e.g., connection establishment time for different
combinations of security policies.

Rocha et al. [18] compare the performance of the OPC UA publish/subscribe
mechanism with the Message Queue Telemetry Transport protocol (MQTT) [19].
Similarly, Burger et al. [20] look the OPC UA publish/subscribe, investigating
memory and CPU consumption, reaching the conclusion that memory and net-
work overhead are small, as well as usage of data encryption, while CPU uti-
lization is identified as the bottleneck. The publish/subscribe mechanism is not
covered in this article, but the observations on network and memory load v.s.
CPU utilization are similar.

Silva et al. [21] evaluate a series of Internet of Things protocols, including
MQTT and OPC UA, in an experiment measuring completion times related to
data transport, similarly as this done in this article.

Ladegourdie and Kua [22] investigate the performance in terms of CPU and
memory consumption on different sets of traffic scenarios, in an experiment also
utilizing a RasberryPi as the OPC UA server.

All of these mentioned related articles investigate important aspects of the
OPC UA protocol, and several of them evaluate similar performance metrics as
done in our article, e.g., time for connection establishment and response time of
signal reads. However, none of these previous works include the authorization
flow in their measurements, which is the focus of this work.

3 Architecture

In this section the system architecture is briefly described and the authoriza-
tion protocol analyzed to provide the theoretical foundation for the work to be
presented. The goal of this article is to study how these theoretical constructs
behave when deployed in practice.

An Access Control Enforcement Architecture describes required mech-
anisms and components related to access control, together with their respective
placement in the system architecture. The architecture used in this work is based

4 Björn Leander �, Aida Čaušević , Hans Hansson, and Tomas Lindström

on the approach suggested in [11], with basic components and placements as de-
picted in Fig. 1. The architecture is using components from the eXtensible Ac-
cess Control Markup Language (XACML) reference architecture [23, 24], with
the main Policy Decision Point (PDP) outsourced to an authorization service.
It makes the active policy decisions upon a client request and returns the policy
decision in the form of an authorization access token (AuthZ token). The client
transfers the policy decision to the resource server that makes a local policy
decision, based on the access token content and local policy data. The policy
decision is enforced by the resource servers’ Policy Enforcement Point (PEP).

Resource Server

Authorization
Service2

3

Policy
data'

4

Client

6

PDP'

Policy
data''

5

PEP

Resource(s)

PDP''

1

Fig. 1: An access control enforcement architecture, from [11].

The Authorization Protocol used in the architecture is based on the im-
plicit authorization flow of OPC UA4, executed in two different phases. The
primary policy decisions are taken during session establishment phase using the
protocol described in Fig. 2a in which the authorization server makes the high-
level decisions on valid permissions for the duration of the session encoded in an
access token. The client acts as a mediator of the policy decisions by sending the
access token as a part of the Activate Session call. The resource server validates
the access token before the session is activated.

The second phase of the authorization protocol is executed when the client
requests a resource from the resource server through the active session, following
the protocol shown in Fig. 2b. The resource server validates token expiry and
checks whether the requested resource permissions are included in the set of
permissions granted by the central policy decision. If the resource is not granted,
the client may attempt to fetch a new AuthZ token from the authorization service

4 reference.opcfoundation.org/GDS/v105/docs/9

Evaluation of an OPC UA-based Access Control Enforcement Architecture 5

and refresh the session. If there are changed conditions implying new permissions
the resource may be granted. The client must then refresh the session with a
new token before token expires to avoid a new round of a session establishment.

The refresh token flow is identical to the session creation flow, except that
the Client does not need to Open Session. The Client directly requests a new
AuthZ token from the authorization service, and call Refresh Session, instead of
Activate session.

(a) Create Session (b) Access Resource

Fig. 2: Phases of the Authorization Protocol Flow.

Session creation. The session creation procedure is conducted in three
separate stages:

1. Open session.
2. Request AuthZ token.
3. Activate session.

Opening a session includes the following steps: 1) establishing a channel with
the server; 2) sending client instance certificate; 3) receiving service instance
certificate along with connection options for the server, including security options
for secure communication and user authentication/authorization.

If the options for user authentication/authorization indicate that an AuthZ
token is required, the client needs to request a token from the endpoint as des-
ignated in the security information received from the the resource server. The
token is then used to activate a session with the resource server.

From the resource server perspective, the session establishment is done in two
steps: 1) an open session requests arrives and the resource server replies with the
list of security configurations it supports, including options for authorization; and
2) upon session activation, the received access token is validated and associated
with the active session, if accepted. Several other checks are also done on session
establishment, e.g., the client application instance certificate must be directly or
indirectly trusted by the server. AuthZ token validation includes: 1) decryption

6 Björn Leander �, Aida Čaušević , Hans Hansson, and Tomas Lindström

(if encrypted); 2) validation of the token signature and expiry time; and 3)
control that the token is issued for the client of the session and for the resource
server.

Communication through active session. Once the session is activated,
the client may access resources if permitted by the resource server, e.g., browse
the name-space, read values, write values and execute methods. In due time
before session expiry, the client can request a new access token from the autho-
rization service and refresh the active session. An expired session, regardless of
content, cannot be used for resource requests.

3.1 Protocol Modeling

To verify some basic properties of the authorization protocol, a model is created
using the Uppaal [25] tool environment, illustrated in Fig. 3. The model has
separate templates for a client, a resource server and an authorization service.
This model does not contain any details on access token content, instead we
assume that a correctly issued token will contain permissions for the desired
resource. The client and resource server models contain all states and transitions
related to the authorization protocol outlined above.

Using this model we show that resource requests are not possible unless the
model is in an active session. Furthermore we show that outlined protocol must
be followed in order for the client to be granted access resources.

Fig. 3: Resource Server (RS1), Client (C1) and Authorization Service (AS1),
modeled in Uppaal.

Using the temporal logic we can verify that the modeled protocol works as ex-
pected, i.e., that the protocol is free from deadlocks (A[] not deadlock) and that it
is possible to activate a session (E<> RS1.SessionActive and C1.SessionActive).
Further, we check that the resource server cannot be in not connected state while
the client is in session active (A[] RS1.NotConnected imply not C1.SessionActive).

Evaluation of an OPC UA-based Access Control Enforcement Architecture 7

Also, we were interested to see whether it is possible for the client to access a
resource only by the authorized access state (E<> C1.AuthorizedAccess, A[]
not C1.UnauthorizedAccess). All the checks have been successfully performed,
showing no deviations.

4 Implementation

This section provides detailed information on the implementation done to sup-
port the evaluation work. Even though the authorization flow, as described in
the previous section, is part of the standard, no available software stack fully
supports the flow yet. The required implementation for supporting the autho-
rization flow according to the standard is outlined below. The implementation
uses the .NET stack implementation from the OPC foundation5, as it currently
has the best support for the outlined authorization flow, and, being open source
it is quite easy to extend.

Resource server. All the basic logic for transmitting and receiving access
tokens are implemented in the stack. However, token validation and handling
of permissions based on token content has been implemented as part of this
evaluation, as well as the behavior for handling token expiry.

Client. The available base-class for an OPC UA client is extended with the
functionality needed to support the authorization flow:

– Decoding the user access token policy data as part of the security require-
ments returned from a server on open session.

– Establishing a session and request access token from the Authorization ser-
vice according to data received from a resource server.

– Using the access token to activate the session.
– Managing a token renewal before the expiry.

The expiry time of the access token is an important aspect in enabling a
sufficiently dynamic mechanism for permission delegation. It is the responsibility
of the client to refresh an active session before the access token expires. Token
renewal is implemented in a way that a new access token is requested from the
authorization service when 80% of the token life-time has passed. As soon as the
new access token is received, the session is refreshed.

Authorization Service. To support the evaluation experiment, a simple
authorization service is implemented following the OPC UA standard6, with the
authorization service being accessible through an OPC UA server endpoint. On
an AuthZ token request from a client, the implemented authorization service
will always return a valid access token, with a configurable expiry time and a
configurable size. This means that we have minimized the policy inference time
of the authorization service.

JSON Web Tokens (JWT) [26] is used for encoding the policy decision, which
is the preferred encoding according to the OPC UA standard.

5 github.com/OPCFoundation/UA-.NETStandard
6 reference.opcfoundation.org/GDS/v105/docs/9.6.5

8 Björn Leander �, Aida Čaušević , Hans Hansson, and Tomas Lindström

5 Experiment

In order to evaluate the two phases of the authorization protocol, as outlined in
Section 3, a set of experiments are constructed and they are executed twice, first
in a system configured to use no authorization as a baseline, and second following
the authorization protocol. Measuring the time to complete for different parts
of the protocol allows a quantitative estimation of the operational properties of
the authorization protocol, compared to the baseline.

ClientAuthorization
Service

Switch

Traffic
Generator

Resource
Server

Network
snoop

Fig. 4: Experiment setup.

In order to understand the sensitivity of the architecture in relation to traffic
load, indicating its scalability, experiments are executed using two traffic load
scenarios, High traffic load and Low traffic load. In the Low traffic load scenario,
no additional traffic is generated. In the High traffic load scenario the client has
additional connections to 5 other servers, where each accesses variables on 10ms
intervals, representing approximately 5000 reads/s. Additionally, two clients are
connected to the resource server, one making 6 resource requests (2 read, 2 write,
2 execute) on a 15ms clock, and one making 7 reads on a 10ms clock, representing
approximately 1100 additional resource requests per second towards the resource
server. Measuring network load, the high-load scenario generates approximately
1.2 Mbps traffic to the resource server and 2.1 Mbps from the server. The high-
load scenario pushes the CPU load of the resource server to about 40% for each
of its’ four processor cores.

The High traffic load scenario is meant to represent a realistically high load
for the resource server and client respectively.

The experiments are executed in a system containing a resource server, a
specially developed client which can execute and measure the completion times,
an authorization service, and a variable subsystem for generating the traffic load
scenario. The system setup for the experiment is illustrated in Fig. 4.

During the experiments related to session establishment, the completion time
for the three stages of the session establishment protocol is measured (i.e., open
session, handle token, activate session). For the resource access phase of the
protocol, experiments are performed for read and write of signals and execution
of methods.

Evaluation of an OPC UA-based Access Control Enforcement Architecture 9

In total, this sums up to 16 individual experiments, with results summarized
in Section 6. Each instance of the experiment is executed a fixed number of
times, i.e., 1000 times for the connection experiments and 4000 times for the
access resource experiments. The client is designed to perform experiment rep-
etitions on a clock with some randomization. The time interval between each
experiment sample is between 10ms and 2000ms. This is done so that the sam-
ples are not accidentally coinciding with any of the fixed-frequency cycles of the
traffic generators.

Experiments are also performed related to the impact of different token sizes
and token expiry times. The size of the authorization token may impact connec-
tion establishment time, prompting an additional run of the connection estab-
lishment experiment, using variable token size. An authorization token refresh
may impact response times of resource requests, which is examined in an exper-
iment using variable token expiry time.

Equipment. The equipment used in the experiment is meant to mirror the
scenario of a relatively simple resource server, such as an industrial controller,
communicating with a Human-Machine Interface (HMI) client running on a stan-
dard PC, and the authorization service running on a server machine.

A Raspberry Pi 4 Model B (ARM Cortex-A72) with Ubuntu 22.04 is used
for running the resource server. The ARM Cortext-A72 is normally clocked at
1.5GHz and the majority of the experiments are performed using that configu-
ration. A set of experiments is also performed with the processor down-clocked
to 600MHz, to get performance comparable to that of a CI8457, which is an
industrial hardware platform used for running control and connectivity services.

The client and the authorization service are both running on separate com-
modity hi-spec PCs (Intel i7-11850H (8 cores), 2.5GHz, 32GB RAM, Windows
10). The Switch is a ZYXEL GS1915-8.

6 Results

In the following sections, the detailed results of the performed experiments are
presented.

6.1 Results on Connection Experiments

The connection experiments are executed for low and high load scenarios, with
and without token-based authorization, with each test executed 1000 times. In
order to perform a more detailed analysis, the total connection time is separated
into open session, request token and activate session, following the protocol flow
in Fig. 2a. Results for the experiments are presented in Table 1.

When looking at the connection test results, an obvious additional cost when
using access tokens is the time related to requesting the token from the autho-
rization service. In our experiment this adds time representing a whole additional

7 800xahardwareselector.com/product/ci845

10 Björn Leander �, Aida Čaušević , Hans Hansson, and Tomas Lindström

Table 1: Results from connection experiments. All results are given in
milliseconds where µ is the average value and σ the standard deviation.

Authorization None Token
µ σ µ σ

Low load
Open session 15.0 3.3 15.1 3.3
Request Token 0 0 115.2 12.8
Activate session 100.0 12.3 193.9 12.9
Total 115.0 13.2 324.3 19.3
High load
Open session 17.0 10.5 18.7 14.4
Request Token 0 0 213.8 69.0
Activate session 124.8 23.2 223.1 25.1
Total 141.6 29.0 455.6 88.6

connect cycle, on average 115ms in the low load scenario and as much as 213ms
in the high load one. For all these experiments, the client is creating a new session
for each access token request. This points towards a first idea for optimizing the
client implementation of the protocol by keeping the session to the authorization
service open in the client.

Connections using access tokens not only increase in cost by the amount
related to authorization service interactions of the client, a significant increase
in time is needed also for the session activation, almost doubling the average
session creation time. The experiment is not constructed to directly measure
what in the session activation is most expensive, but a theoretical analysis of
the protocol suggests the following possible sources for this extra time:

– Transport of the AuthZ token (which in this example is 1536 bytes after
encryption).

– Encryption of the token on the client side.

– Decryption of token data on server side.

– Validation of token on server side.

The access token is already transported over an encrypted channel, so a
second potential optimization of the protocol would be to remove the explicit
encryption of the access token, which is added by the client.

There is a clear impact of the traffic loads for both authorization scenarios,
especially on Activate Session and Request Token. By analyzing different traffic
scenarios, we notice that network utilization and memory consumption for both
the resource server and client are only marginally affected by the high load.
What is hugely affected is the CPU load of the resource server, jumping from an
average of 4% CPU utilization on each core in the low traffic scenario to about
40% for high traffic load.

Evaluation of an OPC UA-based Access Control Enforcement Architecture 11

6.2 Results on Access Resource Experiments

To evaluate the impact of the authorization protocol on accessing resources,
three separate experiments are performed, for reading, writing and execution of
a method, each one being executed 4000 times, for each of the different traffic
scenarios. The results are presented in Table 2.

Table 2: Results from the resource access experiments. All results are given in
milliseconds, where µ is the average value and σ the standard deviation.

Authorization None Token
µ σ µ σ

Low load
Read 3.2 1.5 3.3 1.7
Write 3.2 1.5 3.3 1.5
Execute 12.3 4.0 12.7 3.3
High load
Read 2.2 1.6 2.2 1.7
Write 2.3 1.6 2.3 1.6
Execute 10.0 4.5 10.3 4.1

From the resource access experiment results, we can see that resource requests
have similar completion time regardless of the used authorization protocol. This
is expected, since the major overhead of the authorization protocol is related to
session creation. In our experiment, a resource request related to read or write
will on average take from 2ms to 3ms to complete, while the method execution
has a completion time between 10ms and 13ms. It is worth noting that the
method execution call is designed to return directly, i.e., there is a minimal
amount of internal processing within the resource server related to executing
the method.

The resource request times for the high-load scenario consistently outperform
the low load scenario in our experiments. A theoretical analysis shows that the
resource server handling of access requests is done by pulling working threads
from a thread pool. A hypothesis is that in the low load scenario, the threads will
be inactive before the next resource request arrives, while when there is a high
load, this will not happen, meaning that the thread creation time is increasing
the completion time of the low load resource requests. This is however out of the
scope for this article to investigate, and is therefore not further explored.

6.3 Results on Different Token Expiry Times

Before an access token expires, the client of the session has the option to fetch
a new AuthZ token from the authorization service, and use that to refresh the
session. As demonstrated, session activation is a relatively expensive operation,

12 Björn Leander �, Aida Čaušević , Hans Hansson, and Tomas Lindström

the impact of token refresh is however not evaluated. By lowering the session
expiry time, the amount of session refresh calls are increased. However, measur-
ing the completion time for a session refresh explicitly is not very interesting, as
it is executed during the time a session is already open, i.e., it does not directly
affect session establishment.

The token expiry time may however impact resource requests. To investigate
this, the read-resource experiment is repeated, but this time using sessions with
different token expiry times. The client is configured to automatically refresh the
tokens. Results from 1000 runs for three different expiry times are summarized
in Table 3, for the low-traffic scenario. Additionally, we also report the maximum
time to completion.

Table 3: Results for read resource experiment with different token expiry times.
µ is the average value and σ is the standard deviation.

Token expiry time µ σ max min
8s 4.6ms 9.7ms 139ms 2.0ms
28s 3.3ms 3.1ms 60ms 1.9ms
96s 3.1ms 1.8ms 45ms 1.5ms

Based on the gathered results, we can conclude that the expiry time does not
affect the average value considerably, but the standard deviation is substantially
increased with shorter expiry times. When a resource request coincides with a
session refresh call to the resource server, the request may be delayed until the
refresh is completed. The likelihood for such a coincidence is to a large extent
depending on the expiry time, with a higher risk for a lower expiry time.

6.4 Result on Different Token Sizes

It is most likely the case that the different token sizes have impact on the ses-
sion activation time, because of the cost for encryption and decryption of the
token. To evaluate how the token size affects the connection time, the connec-
tion experiments are repeated, but with the issued AuthZ token having different
sizes. A claim with configurable size has been added, after which the total token
size was calculated (i.e., after encryption). For each token size, the connection
experiment has been repeated 100 times. Results for average connection time in
relation to size of the token are provided in Fig. 5. Please note that the session
activation time remains stable (at around 220ms) until token size reaches 4000
bytes, after which the time to connect increases proportionally.

6.5 Results on Lowering the CPU Clock Frequency of the Resource
Server

CPU utilization of the resource server seems to be a determining factor for the
completion time for at least the session establishment part of the protocol. The

Evaluation of an OPC UA-based Access Control Enforcement Architecture 13

0

50

100

150

200

250

300

350

400

450

0 2000 4000 6000 8000 10000 12000

C
o

n
n

ec
ti

o
n

 t
im

e
(m

s)

Token Size (bytes)

Fig. 5: Session activation time vs. token size

experiments so far have been done using a 1.5GHz processor. In the following
we repeat some of the experiments, but with the clock frequency of the CPU of
the resource server lowered to 600MHz (the lowest supported frequency of the
Cortex A72), i.e., to 40% of the nominal performance. The aim is to get results
comparable to the ones of an CI845, an industrial hardware platform developed
by ABB used for various control service applications. Connection experiments
results are given in Table 4.

Table 4: Results on connection experiment using downgraded resource server
CPU. All numbers are provided in milliseconds, µ is the average value and σ is
the standard deviation. Percentages in parenthesis are compared to the original
experiment.

Authorization None Token
µ σ µ σ

Low load
Open session 18.4 (+23%) 6.1 19.9 (+32%) 10.0
Request Token 0 0 149.8 (+30%) 31.9
Activate session 163.5 (+63%) 31.4 216.7 (+12%) 33.7
Total 182.0 (+58%) 33.7 386.7 (+14%) 51.1
High load
Open session 21.6 (+27%) 7.2 33.8 (+81%) 85.5
Request Token 0 0 216.1 (+1%) 84.5
Activate session 196.0 (+57%) 22.0 364.7 (+63%) 58.7
Total 217.7 (+54%) 25.2 614.7 (+35%) 211.7

14 Björn Leander �, Aida Čaušević , Hans Hansson, and Tomas Lindström

Compared to the previous experiments in Section 6.1, the total completion
time for connection establishment increases between 14% and 60%.

As the completion time for the different experiments related to accessing
resources are very similar, only the read experiment using token authorization
has been repeated in this setting, for low and high traffic scenarios. For low
traffic, the average time for read was 4.4 ms (+38%), with σ = 3.2 ms and for
high traffic average completion time was 3.8 ms (+72%), with σ = 1.8 ms. The
results follow the patterns of the initial experiments, but with completion times
increasing on a similar scale as the connection establishment experiment.

This confirm the assumption that the completion time in our experiment
is highly dependent on the CPU power of the resource server. The standard
deviation also increases significantly, especially in the high-load scenario. This
implies that our selected high-load scenario may be beyond the limit of what this
configuration of the resource server can handle while staying within predictable
operational boundaries.

7 Suggestions on optimizations of session activation

Based on the analysis of the experiment results, we suggest two potential opti-
mizations for the authorization protocol implementation: 1) In the client to keep
the session to authorization service(s) open, and 2) to remove the explicit en-
cryption of the access token if it is already being transported using an encrypted
channel.

Both suggested optimizations are implemented and then evaluated using the
same experimental setup as the initial experiments related to connection estab-
lishment. Results are provided in Table 5. As the optimization only affects the
session establishment, the experiments for resource requests are not repeated.

Table 5: Experimental results of optimization of session activation. All numbers
are given in milliseconds, µ is the average value and σ is the standard deviation.

Improvement Keep session Single encryption Combined
µ σ µ σ µ σ

Low load
Open session 14.1 3.0 13.8 5.5 15.0 6.3
Request Token 7.3 4.4 128.5 32.7 7.1 4.1
Activate session 191.0 10.9 142.6 13.6 143.6 15.8
Total 212.5 13.4 285.0 38.3 165.8 20.8
High load
Open session 15.4 9.8 16.1 15.0 13.1 3.5
Request Token 10.8 7.5 160.3 50.7 8.2 3.4
Activate session 208.3 25.2 151.8 35.5 148.1 12.5
Total 234.4 32.9 328.2 69.0 169.5 15.5

Evaluation of an OPC UA-based Access Control Enforcement Architecture 15

As can be seen, keeping a session to the authorization service provides a large
performance increase on the token request part of the protocol, going from an
average of 115ms (Table 1, low load req. token) down to 7ms in our experiment.
Removing the double encryption enables a significant gain during the session
activation phase, down to about 50ms in our experiment.

The best performance gain is reached by combining these two approaches,
both caching the authorization service session and removing the double encryp-
tion. Using this combination cuts the connection time to between 50% and 37%
of the initial implementation. This results in the total difference between us-
ing no authorization and using the authorization protocol with access tokens to
be reduced to about 50ms in our experiment (115.0 ms with no authorization
compared to 165.8 ms), and is even lower for the high-traffic scenarios.

Repeating the experiment with different token sizes with the single encryp-
tion optimization in place indicates that the size of the token no longer has an
impact on the session activation time, i.e., in our experiments all the measurable
additional time related to the size of the AuthZ token is related to the explicit
token encryption.

8 Discussion

The performed experiments have shown some important and interesting proper-
ties of the authorization protocol. Authorization in the way it is implemented in
this architecture, will have no measurable impact on individual resource requests,
but have significant impact on session establishment. For sporadic resource re-
quests that include establishing a new session to a resource server, a majority of
the response time will be related to the session establishment. This is also the
case for scenario without using the enforcement architecture.

The session establishment time is increasing when the traffic load towards
the resource server is increasing. In particular, the standard deviation for the
high-load scenario is increasing for the connection time when the enforcement
architecture is used. This due to the authorization protocol containing several
additional steps in which uncertainty is introduced. However, for resource re-
quests, the higher traffic load has no adverse effect on completion times in our
experiment. The architecture scales well with regards to resource requests, but
may have issues for session establishment. This is even more visible for the results
with a lower resource server CPU clock frequency. The completion time increases
and are on average in the same order as the CPU performance downgrade, but
the standard deviation for connection establishment using the enforcement ar-
chitecture is almost tripled.

When analyzing the impact of using short-lived access tokens, the results
point in a similar direction. The average completion time related to resource
requests is close to the initial experiments, but the standard deviation increases
as the expiry time is decreased. The risk of a resource request coinciding with the
session re-activation call increases with a short token expiry time. For minimizing
this impact, the client could be implemented to avoid resource requests while a

16 Björn Leander �, Aida Čaušević , Hans Hansson, and Tomas Lindström

session-reactivation is on-going. With a shorter token expiry time, the flexibility
of the access control mechanism increases. Generally, using a short expiry time in
a large system will generate a lot of traffic both between clients and authorization
services, and clients and resource servers.

For the initial experiments on session establishment, the completion time is
on average three times higher when using the described authorization proto-
col. The majority of additional time is spent during token request and session
activation. Combining two simple suggestions of performance optimization, the
session establishment phase of the authorization protocol is brought to numbers
comparable to the baseline scenario when using no authorization.

The first performance optimization is a pure client implementation, and is
using the assumption that many resource servers will outsource their policy
decisions to the same authorization service. Therefore it is a good idea to keep
a session of an authorization service open to be used for subsequent AuthZ
token requests. This will have a slight memory consumption hit for the client
and authorization service. The exact impact for the authorization service is not
further evaluated in this article. However, for a larger systems with many clients
there may be negative scalability effects of that approach for the authorization
service, especially on memory consumption. On the other hand, establishing a
new session with the authorization service for each resource request and client
will have a much higher impact on the authorization service CPU utilization.

The second performance optimization is related to encryption and decryption
of the AuthZ token. If the client is communicating with the resource server
using an unencrypted session, it is important that the AuthZ token is encrypted.
Otherwise this provides an opportunity for token to be stolen and misused by
a threat actor. However, if the session is already encrypted, there is no obvious
need for the AuthZ token to also be encrypted. The default behavior of the
.NET stack is to use asymmetric encryption of the AuthZ token, which leads to
a huge additional time needed for the resource server to perform decryption of the
token. Removing this “double encryption” is possible within the resource server
OPC UA configuration. However, using this option may lead to other unwanted
behavior of the server, e.g., the same option is used to remove validation of the
client nonce on session establishment. This optimization will therefore need some
additional rounds of analysis before being used in a real-world system.

If keeping the encryption of the AuthZ token, the size of the token will have
a direct impact on the completion time for session establishment, as shown in
Section 6.4. Therefore it is desirable to attempt to minimize the size of the token.
For dynamic access control this may be a challenging task, as the policy decision
from the authorization service will have to be expressed in a very detailed way.
Further investigations by continuing the work in [11] are needed to find the right
balance between the high granularity and sufficiently compact token encoding.
Furthermore, there is a practical size limitation of the AuthZ token in the OPC
UA .NET stack is set to 256kb, which should be sufficient for most needs, but
may be an actual limitation in more complex scenarios.

Evaluation of an OPC UA-based Access Control Enforcement Architecture 17

8.1 Recommendations

Based on the experimental results and experiences from implementing the en-
forcement architecture, a few basic advice and recommendations can be provided.

From the client side one should keep sessions active, if several resources
requests are likely to be performed towards the same resource server. This recom-
mendation is applicable regardless of the enforcement architecture. It provides
extra benefits with regards to authorization service sessions as described above.

Avoid double encryption, especially asymmetric encryption/decryption
that is CPU intensive, and can cause a high penalty on a low resource embedded
device.

If using token encryption, keep token size small as time to perform en-
cryption/decryption increases with token size.

Find the right balance for token expiry times. A short expiry time will
have an impact on scalability properties of the system, including resource request
performance, as session refresh can interfere with ordinary resource requests. The
longer the expiry time, the higher the risk of outdated permissions being used
in the system. In the performed experiments, an expiry time of a few minutes
have a rather low likelihood of negatively impacting performance, but this will
depend on the size and complexity of the system.

If using the described enforcement protocol in a control-loop with real-time
requirements, the completion time should be carefully measured in the target
system, to guarantee that deadlines can be met and that the jitter for resource
requests are kept at acceptable levels. In such a scenario it is most likely that
there is no need for short token expiry times. Please note that there are other
potentially more deterministic methods for real-time control in OPC UA, e.g.,
using the publish/subscribe pattern, which however cannot provide as flexible
access control possibilities.

The typical use-case for this enforcement architecture would be for high level
control and supervision, i.e., on the communication between an operator HMI
and (several) resource servers, or for the workflow orchestration part of, e.g.,
modular automation, as described in [9]. In these use-cases the cycle-times are
often not that high and may even be event-based, while the access control policies
are more dynamic in nature, based on the currently executing workflows in the
system.

8.2 Limitations and impact

The precise results of the described experiments are limited to the materializa-
tion and implementation of the hardware and software components used. For
different system with other components, the completion times most likely will
differ. However, we believe that the results provide good indications of the com-
pletion times for the described phases of the authorization protocol, especially
the relative performance of the protocol compared to the baseline.

A drawback of using .NET to measure quality metrics is its lack of real-time
characteristics, as e.g., memory management is out of control for the program-
mer. A garbage collection may occur at any time, which can have huge effect

18 Björn Leander �, Aida Čaušević , Hans Hansson, and Tomas Lindström

on a particular measurement. Furthermore, operating system overhead may be
larger and more unpredictable when using Windows (for the client) and Ubuntu
for the resource server, as compared to using real-time operating systems. To
counter these issues, we have repeated the experiments a large number of times
to decrease the impact of sporadic disturbances.

As mentioned, the inference time of the authorization service is set to a
minimum in the experimental setup. In reality, this inference time will of course
be larger and have an impact on the performance of the session establishment.
Measuring this impact is out of scope for this work, but may be interesting to
look at as part of a future experiment.

9 Conclusions

Dynamic fine-grained authorization is a requirement for the future industrial
automation and control systems, which will be network-centric, dynamic and
flexible, using a Zero-trust security model. Very few technologies are available
which can provide such characteristics for industrial systems. The OPC UA
protocol is currently the best option, if using the authorization flow based on
outsourced policy decisions to an authorization service.

In this work, we have analyzed, implemented and evaluated several aspects
of this variant of access control enforcement architecture, something that is not
previously done.

The experiments show that for resource requests there is no measurable addi-
tional cost of the authorization protocol. However for short AuthZ token expiry
times, which will result in frequent session refresh calls, the standard deviation
of the resource request is increasing. The expiry time is therefore one impor-
tant design decision which is a trade-off between the level of dynamicity of the
architecture and the standard deviation of resource requests.

There is a large difference in the connection establishment times between us-
ing fine-grained access control and no authorization, which is further impacted
by increasing traffic load. However, two suggestions for optimizations are pro-
vided that limit this impact. One is related to the session handling in the client,
while the other is related to avoiding double encryption of the AuthZ token.
Combining these two optimizations more than halves the average connection
establishment time compared to the initial approach.

Limitations. The experimental evaluation required a number of implemen-
tations to fully support the described authorization protocol. These implemen-
tations clearly have an impact on the results of the evaluations and any misin-
terpretations of the standard, or bad design decisions can limit the validity of
the results.

In this article we aim to have an experimental scenario were the resource
server and client are similar to what could be expected in an industrial system.
However, the required implementation was not possible to run on an embed-
ded real-time system. To partly counter this, the CPU-, memory- and network-
utilization are measured during the experiments, leading to the realization that

Evaluation of an OPC UA-based Access Control Enforcement Architecture 19

the CPU-frequency is the deciding factor. This was confirmed by repeating some
of the experiments with the CPU of the resource server clocked down to 40%,
leading to results with equally longer completion time.

Future Work. The inference time of the Authorization Service is not ac-
counted for in our evaluation, as the authorization service always returns the
same claims, encoded in a correct token. Therefore, it is our plan to include
the inference time for different variants of policy decision mechanisms in the
authorization service in our future work.

Once there exist commercial or open-source implementations of the autho-
rization flow, we would like to repeat the evaluation using a resource server
running a real-time operating system on an embedded device.

Detailed threat modeling and analysis is not covered in this work, but is
another important future investigation.

Acknowledgements

This work is supported by ABB AB; the industrial postgraduate school Automa-
tion Region Research Academy (ARRAY), funded by The Knowledge Founda-
tion; and the Horizon 2020 project InSecTT. InSecTT (www.insectt.eu) has
received funding from the ECSEL Joint Undertaking (JU) under grant agreement
No 876038. The JU receives support from the European Union’s Horizon 2020
research and innovation programme and Austria, Sweden, Spain, Italy, France,
Portugal, Ireland, Finland, Slovenia, Poland, Netherlands, Turkey.8

References

1. A. Sigov, L. Ratkin, L. A. Ivanov, and L. D. Xu, “Emerging enabling technologies
for industry 4.0 and beyond,” Information Systems Frontiers, pp. 1–11, 2022.

2. K.-d. Thoben, S. Wiesner, and T. Wuest, “Industrie 4.0 and smart manufacturing –
a review of research issues and application examples,” Intl. Journal of Automation
Technology, January 2017.

3. Y. Lu, “Industry 4.0: A survey on technologies, applications and open research
issues,” Journal of Industrial Information Integration, vol. 6, pp. 1 – 10, 2017.

4. C. Zanasi, F. Magnanini, S. Russo, and M. Colajanni, “A zero trust approach for
the cybersecurity of industrial control systems,” in 2022 IEEE 21st International
Symposium on Network Computing and Applications (NCA), vol. 21, pp. 1–7, 2022.

5. B. Leander, B. Johansson, T. Lindström, O. Holmström, T. Nolte, and A. V.
Papadopoulos, “Dependability and Security Aspects of Network-Centric Control,”
in 28th IEEE International Conference on Emerging Technologies and Factory
Automation (ETFA), IEEE, 2023.

6. J. Saltzer and M. Schroeder, “The Protection of Information in Computer Sys-
tems,” in proceedings of the IEEE, vol. 63, pp. 1278–1308, September 1975.

7. S. Rose, O. Borchert, S. Mitchell, and S. Connelly, “Zero Trust Architecture,” tech.
rep., National Institute of Standards and Technology, Gaithersburg, MD, aug 2020.

8 The document reflects only the author’s view and the Commission is not responsible
for any use that may be made of the information it contains.

20 Björn Leander �, Aida Čaušević , Hans Hansson, and Tomas Lindström

8. R. Sandhu, K. Ranganathan, and X. Zhang, “Secure information sharing enabled
by trusted computing and PEI models,” Proceedings of the 2006 ACM Symposium
on Information, Computer and Communications Security, ASIACCS ’06, vol. 2006,
pp. 2–12, 2006.

9. B. Leander, A. Čaušević, H. Hansson, and T. Lindström, “Toward an ideal access
control strategy for industry 4.0 manufacturing systems,” IEEE Access, vol. 9,
pp. 114037–114050, 2021.

10. K. Knorr, “Dynamic access control through Petri net workflows,” Proceedings -
Annual Computer Security Applications Conference, ACSAC, vol. 2000-January,
pp. 159–167, 2000.

11. B. Leander, A. Čaušević, T. Lindström, and H. Hansson, “Access control enforce-
ment architectures for dynamic manufacturing systems,” in 2023 IEEE 20th In-
ternational Conference on Software Architecture (ICSA), pp. 82–92, 2023.

12. “IEC 62541 OPC unified architecture,” standard, Internation Electrotechnical
Commission, Geneva, CH, 2016.

13. C. Alcaraz, J. Lopez, and S. Wolthusen, “Policy enforcement system for secure
interoperable control in distributed Smart Grid systems,” Journal of Network and
Computer Applications, vol. 59, pp. 301–314, 2016.

14. F. Martinelli, O. Osliak, P. Mori, and A. Saracino, “Improving security in indus-
try 4.0 by extending OPC-UA with usage control,” in 15th Intl. Conference on
Availability, Reliability and Security, ACM, 2020.

15. J. Park and R. Sandhu, “The UCONABC usage control model,” ACM Transactions
on Information and System Security, vol. 7, no. 1, pp. 128–174, 2004.

16. S. Cavalieri and F. Chiacchio, “Analysis of OPC UA performances,” Computer
Standards and Interfaces, vol. 36, no. 1, pp. 165–177, 2013.

17. F. Kohnhäuser, N. Coppik, F. Mendoza, and A. Kumari, “On the Feasibility
and Performance of Secure OPC UA Communication with IIoT Devices,” Lecture
Notes in Computer Science, vol. 13414 LNCS, pp. 189–203, 2022.

18. M. Silveira Rocha, G. Serpa Sestito, A. Luis Dias, A. Celso Turcato, and D. Bran-
dao, “Performance Comparison between OPC UA and MQTT for Data Exchange,”
2018 Workshop on Metrology for Industry 4.0 and IoT, MetroInd 4.0 and IoT 2018
- Proceedings, pp. 175–179, 2018.

19. “MQTT Version 5.0,” OASIS Standard, March 2019. Edited by Andrew Banks,
Ed Briggs, Ken Borgendale, and Rahul Gupta.

20. A. Burger, H. Koziolek, J. Rückert, M. Platenius-Mohr, and G. Stomberg, “Bot-
tleneck identification and performance modeling of OPC UA communication mod-
els,” ICPE 2019 - Proceedings of the 2019 ACM/SPEC International Conference
on Performance Engineering, pp. 231–242, 2019.

21. D. Silva, L. I. Carvalho, J. Soares, and R. C. Sofia, “A Performance Analysis of
Internet of Things Networking,” Applied Sciences, vol. 11, no. 4879, pp. 1–30, 2021.

22. M. Ladegourdie and J. Kua, “Performance Analysis of OPC UA for Industrial
Interoperability towards Industry 4.0,” IoT, vol. 3, no. 4, pp. 507–525, 2022.

23. “eXtensible Access Control Markup Language (XACML) Version 3 . 0 Plus Errata
01,” OASIS Standard incorporating Approved Errata., July 2017. Edited by Erik
Rissanen.

24. V. C. Hu, D. Ferraiolo, R. Kuhn, A. Schnitzer, K. Sandlin, R. Miller, and K. Scar-
fone, “Guide to Attribute Based Access Control (ABAC) Definition and Consid-
erations,” tech. rep., NIST, 2014.

25. J. Bengtsson, F. Larsson, K. Larsen, P. Pettersson, and W. Yi, “UPPAAL - a Tool
for Automatic Verifictation of Real-Time Systems,” DoCS Technical Report Nr
96/97, Uppsala University, January 2016.

26. M. Jones, J. Bradley, and N. Sakimura, “JSON Web Token (JWT).” RFC 7519,
May 2015.

